Nonthermal Supernova Remnants with Suzaku

Aya T. Bamba (ISAS/JAXA, Japan) and the Suzaku team

Origin and Acceleration mechanism of cosmic rays are still unknown

0.2. Cosmic ray acceleration and SNRs

Who and how to accelerate cosmic rays up to knee? diffusive shock acc. in shocks? = biggest problem!

difficulties: r_g ~ pc in interstellar B -> we cannot point out accelerators

How to search for accelerators?

TeV electron IS B. (~μG)

IC (e) or pion decay (p) -> TeV gamma-rays

hard X-rays obs. is the best for the electron accelerator search.

0.3. Tasks for Suzaku

Koyama+ discovered sync. X-rays from the shells of SN1006

What is the NEXT issue?

1. Detailed spectra of sync. X-rays

cut-off? -> E_{max} of e, B difference of spectra between regions

2. spectra above 10 keV Sync. spectra free from thermal X-rays efficient acceleration?

3. Searching for new SNRs with sync. X-rays
More and more samples we need!
Samples with thermal and nonthermal X-rays
are especially important.

good stat. w. XIS

low bgd of HXD

both XIS & HXD

1. Detailed spectra of sync. X-rays

cut-off? -> E_{max} of e, B difference of spectra between regions

We need spectra with good statistics Let's see SN1006

1.1. Suzaku observations of SN 1006

Suzaku images

He-like O line band

3 - 5 keV band

clear rim and inside emission

1.2. XIS spectra of SN 1006(1)

XIS spectra of SN 1006 (2) sync. emission from e 3 temp.+ srcut model w. power-law + exp. spectra a=0.57 is fixed (Bamba+ 2007) no residual! counts s-1keV-1 XIS 3F XIS BI 110-3 2 nonthermal emission has 5 clear bending! 4 $5.69 (5.67-5.71) \times 10^{16} \text{ Hz}$

channel energy (keV)

1.3. XIS/HXD spectra of SN 1006

The most tight upper limit (2.7x10⁻⁵ ph/cm²/s in 10-15 keV)

1.4. XIS spectrum of each rim

cutloff freq.

6.66(6.58-6.69)x 10^{16} Hz 4.68(4.64-4.73)x 10^{16} Hz

Larger cutoff in the NE rim

1.5. What determine the cutoff energy? (Bamba+ 2008)

cutoff freq. =
$$1.6 \times 10^{16} \left(\frac{B}{1 \text{microG}} \right) \left(\frac{E}{10 \text{TeV}} \right)^2$$
 [Hz]

B: magnetic field E: the maxmimum E of e (Reynolds 1998)

Assumption: B=40microG (10microG outside of the SNR) (Bamba+ 2003)

The diff. of cutoff freq. in NE and SW

difference of B, E?

-> diff. of acceleataion eff.?

If B=40microG

E = 10 TeV @ NE

E = 8.5 TeV @SW

More precise model is needed!

2. spectra above 10 keV

Sync. spectra free from thermal X-rays efficient acceleration?
We need several samples above 10 keV (RXJ1713 and Vela Jr. will be presented by Uchiyama-san and Tanaka-san)

2.1. Tycho Remnant

Bremss+Power-law kT=4.7(3.7-5.7) keV Γ=2.7(1.4-2.9) (Tamagawa+, A52) (Hayato+, A53)

2 kT plasma requires too high kT (>10 keV)

-> The Tycho rim really emits nonthermal X-rays!

Hard X-ray obs. are essential to distinguish thermal and nonthermal emission

2.2. RCW 86

the oldest histrical SNR (SN184) sync. X-rays from shells

below 10 keV (Bamba+ 2000) Efficient acceleration ? (Vink+ 2006)

HXD/PIN detected X-rays < 30 keV $\Gamma_{>10keV}$ ~ $\Gamma_{<10keV}$

2.3. Cas A - very bright SNR in hard X-rays Chandra 4-6 keV

extrapolate to 11-14 keV Smooth w. Suzaku PSF

Courtesy of E.A. Helder

The first image above 10 keV Hard X-rays come from RS? (Maeda+, in prep)

Excess from power-low ??

Photon index is ~3 in 4-80 keV 3 obs. detected the excess, but only 1% of the bgd.

What is the excess (if it is true detection)?

nonthermal bremss (Allen+, A45, Vink+ private comm.)?

if the density is enough large, it should be observed other components?

secondary e, p, ... (e.g., Yamazaki+, 2006) change from the test particle spectrum?

Direct measurement of p and/or acc. efficiency ??

personal question: Why the Γ is same in <10 keV and >10 keV??

We need more precise bgd and statistics

RCW86: Vink+ 2006

3. Searching for new SNRs with sync. X-rays

How many SNRs accelearate particles?
X-ray surveys of Galactic plane have been done with previous missions
The number is still limited
Many have only nonthermal X-rays especially we need samples with nonthermal and thermal X-rays
In other wavelength?

3.1. How to search new CR accelerators?

HESS discovered many new sources

On the Galactic plane
Some are diffuse
accelerate particles > TeV

Galactic accelerators

However, they have no counterpart!

They are not known PSRs, PWNe "known SNRs known star-forming regions ...

"TeV unID sources"
Deep follow up!

3.2. Suzaku follow-ups of TeV unID sources

HESS J1837-069

(Anada+, A42)

Diffuse TeV + compact and offset X-ray Many TeV unIDs do not have direct counterparts in X-ray (Puehlhofer+, A41)

off-set PWN?

Some PWNe have off-set between X-ray and TeV (e.g. Mori+ A43)

real dark particle accelerator?

(e.g. Matsumoto+, 2007)

X-ray sources are just superposed?

Suzaku follow-ups revealed us it is not simple

3.3. A New SNR with TeV and sync. X-rays

CTB 37B

a bright shell-like SNR in radio in a star forming region? Young? (AD393: Stephenson+ 2002) No X-ray information

TeV emission is found

(Aharonian+ 2006)

TeV flux: only 2% of the Crab nebula

Contour: radio Color: TeV

(T/NT X-rays) (NT X and TeV)

Deep X-ray follow-up is needed

Suzaku Image and spectrum of CTB 37B (Nakamura+ A46)

Hard X-rays are detected from the radio shell The position is consistent w. TeV gamma-rays

Gray scale: 2-10 keV X-ray Red contour: radio

Red contour : radio Green contour : TeV

spectrum:

NEI plasma + power-law $(\Gamma=3.0^{+0.2}_{-0.2})$

new sample of CR acc. SNR young plasma (t~1400 yrs)

The first sample with T/NT X-rays and TeV

Suzaku will discover more and more accelerators

4. Summary

We discussed 3 topics using Suzaku capavility.

- Suzaku achieved detailed analysis of nonthermal emission. The spectrum of SN1006 has clear bending The maximum E of e is 9.4 TeV with assumption of B=40 microG NE accelerate particles more efficiently?
- More precise model!
- Suzaku detected hard X-rays (>10 keV) from several SNRs Tycho, RCW86, Cas A, ...
- > We might be able to detect other component/eff. acc.
- More statistics are needed
- TeV unIDs may be new CR accelerators.
 Many have no direct counterpart in the X-ray band CTB 37B is the first sample w. T/NT X-rays and TeV Suzaku will discover more and more counterparts

Papers and posters cited in this presentation

Bamba+ 2008

Yamaguchi+ 2008, A48

Tamagawa+, A52

Hayato+, A53

Puehlhofer+, A41

Anada+, A42

Mori+, A43

Matsumoto+ 2007

Nakamura+, A46

SN1006 (nonthermal)

SN1006 (theremal)

Tycho (nonthermal)

Tycho (thermal)

HESS unIDs

HESS J1837

Vela X

Dark particle accelerator

CTB37B